首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792259篇
  免费   82277篇
  国内免费   236篇
  2018年   7931篇
  2017年   7580篇
  2016年   10630篇
  2015年   13443篇
  2014年   16021篇
  2013年   23123篇
  2012年   25964篇
  2011年   26746篇
  2010年   18265篇
  2009年   16886篇
  2008年   23908篇
  2007年   24876篇
  2006年   23252篇
  2005年   22360篇
  2004年   22138篇
  2003年   21293篇
  2002年   20779篇
  2001年   34698篇
  2000年   34151篇
  1999年   27372篇
  1998年   9834篇
  1997年   9900篇
  1996年   9498篇
  1995年   9042篇
  1994年   8714篇
  1993年   8748篇
  1992年   22320篇
  1991年   21913篇
  1990年   21354篇
  1989年   20804篇
  1988年   19074篇
  1987年   18318篇
  1986年   17082篇
  1985年   16941篇
  1984年   13926篇
  1983年   12167篇
  1982年   9230篇
  1981年   8349篇
  1980年   7745篇
  1979年   12931篇
  1978年   10194篇
  1977年   9183篇
  1976年   8795篇
  1975年   9812篇
  1974年   10482篇
  1973年   10345篇
  1972年   9469篇
  1971年   8452篇
  1970年   7381篇
  1969年   7254篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
21.
22.
23.
China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.  相似文献   
24.
Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (<60 cm; 10–100 μmol photons m-2 s-1) in a secondary forest of Southern Chile; other species occupy the whole host height (≥10 m; max PPFD >1000 μmol photons m-2 s-1). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae species in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (Amax) than H. cruentum, but the former species kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs >60 μmol photons m-2 s-1. H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both species allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both species, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m-2s-1. Differences in photosynthetic responses to light suggest that light tolerance and species plasticity could explain their contrasting vertical distribution.  相似文献   
25.
26.
Orobates pabsti, a basal diadectid from the lower Permian, is a key fossil for the understanding of early amniote evolution. Quantitative analysis of anatomical information suffers from fragmentation of fossil bones, plastic deformation due to diagenetic processes and fragile preservation within surrounding rock matrix, preventing further biomechanical investigation. Here we describe the steps taken to digitally reconstruct MNG 10181, the holotype specimen of Orobates pabsti, and subsequently use the digital reconstruction to assess body mass, position of the centre of mass in individual segments as well as the whole animal, and study joint mobility in the shoulder and hip joints. The shape of most fossil bone fragments could be recovered from micro-focus computed tomography scans. This also revealed structures that were hitherto hidden within the rock matrix. However, parts of the axial skeleton had to be modelled using relevant isolated bones from the same locality as templates. Based on the digital fossil, mass of MNG 10181 was estimated using a model of body shape that was varied within a plausible range to account for uncertainties of the dimension. In the mean estimate model the specimen had an estimated mass of circa 4 kg. Varying of the mass distribution amongst body segments further revealed that Orobates carried most of its weight on the hind limbs. Mostly unrestricted joint morphology further suggested that MNG 10181 was able to effectively generate propulsion with the pelvic limbs. The digital reconstruction is made available for future biomechanical studies.  相似文献   
27.
Botrytis allii andCollectotrichum dematium are onion pathogens which can infect in the field and cause decay in storage. Some phenolics can hinder development of these fungi, but the effect of cytokinins is not clear. Cytokinins (kinetin or 6-benzyladenine) or phenolics (caffeic or chlorogenic acids) were added to agar at concentrations of 0 to 10–3 M. Cultures were continuously irradiated with fluorescent light or maintained in the dark for 6 days. On unamended media, final mycelial elongation was 45 or 17.8 mm and sporulation was 28 or 10.6 × 104 spores/ml forBotrytis andColletotrichum, respectively. ForBotrytis, mycelial elongation was slightly (5%) but significantly increased and sporulation increased by 21% by incubation on phenolics as compared to cytokinins. Mycelial extension ofColletotrichum was not affected by amendment. Sporulation ofColletotrichum on kinetin was 16 to 28% greater than on the other amendments. As amendments concentration increased elongation of mycelia of both fungi decreased. Sporulation ofBotrytis increased by 60% as amendment concentration increased from 0 to 10–5 M and then decreased 25% at 10–3 M. As amendment concentration increased from 0 to 10–3 M, sporulation ofColletotrichum increased by 45%. Incubation in light increased mycelial extension 3 to 17% forBotrytis andColletotrichum respectively, and sporulation was increased approximately 78% for both fungi. These compounds do not appear to inhibit development of theseBotrytis orColletotrichum species in culture.  相似文献   
28.
29.
30.
Poliovirus RNA species with nucleotides 564 to 571 deleted or with a secondary structure domain (positions 564 to 629) replaced by a shorter irregular oligonucleotide have been engineered previously; these RNAs have been considered quasi-infectious (yielding a single late revertant plaque) and dead, respectively (E. Pilipenko, A. Gmyl, Y. Svitkin, S. Maslova, A. Sinyakov, and V. Agol, Cell 68:119-131, 1992). By using large amounts of these RNAs for transfections, revertant clones with a great variety of genetic changes (point mutations, insertions of foreign sequences, short or extended deletions) were isolated. The pattern of these changes supported the notion that an appropriately spaced oligopyrimidine-AUG tandem is important for efficient poliovirus RNA translation. Structural features within and around this tandem modulated the initiation efficiency. The functional and genetic plasticities of the poliovirus genome are briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号